
ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 1

Figure 1 -Memory Address map. 216 Addresses

LA TROBE UNIVERSITY
DEPARTMENT OF ELECTRONIC ENGINEERING

ELECTRONICS-2

Microprocessors: Lecture 3
Introduction to the 68HC11

Address Map, Registers
and Basic Instruction Set

Contents:
Address Map
Register Set
Instruction Set Overview, Part 1

Add, Push, Pull, Jump, And
Hex -> ASCII
Pointer Registers PC, SP, X, Y
Example: Hex -> ASCII
Jumps, Conditional Jumps JMP, JNE
Software Interrupts SWI
Buffalo Monitor
16 Bit Memory Address Map

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 2

Figure 2- 68HC11 Memory Map.

Which mode this chip starts in is determined by the MODA & MODB pins.

68HC11 Instructions

Example Register Usage:
LDAA #$12 ; Load Accumulator A with the number $12 (=18 decimal)
LDAB #$34 ; Load Accumulator B with the number $34 (=52 decimal)
ABA ; Add accumulator B to A
STAA RESULT ; Store Accumulator A in an address labeled RESULT
SWI ; Stop the program execution - Exit to BUFFALO Monitor

; Result should contain $46 (=70 decimal)
RESULT RMB 0 ; RMB = Reserve Memory Byte

Pointer & Index Registers
SP - Stack Pointer
IX - Index X
IY - Index Y
PC Program Counter

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 3

Figure 3 - 68HC11 Register Set

Stack
The stack is a section of memory set aside for, temporary storage during the execution of a
program.

The stack grows downwards through memory as it fills (PUSH), and recedes up through
memory as it shrinks (PULL).

Stack Pointer
The stack pointer is a 16-bit register that points to the next free location on the stack.
When a value is pushed onto the stack, the stack pointer automatically decrements.
When a value is pulled from the stack, the stack pointer automatically increments.

Stack Operations : PUSH
When a value located in an accumulator or register is pushed onto the stack, it is copied from
the accumulator or register and stored to the location pointed to by the stack pointer.
The stack pointer then decrements to point to the next free location.

Stack Operation : PULL
When a value is pulled from the stack into an accumulator or register, the stack pointer
increments to point to last used location on the stack. The value at that location is then copied
into the accumulator or register. (equivalent instruction on 80x86 - POP)

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 4

Stack Pointer
Not normally altered directly except once on power on reset (eg: LDS #STACK ;initialize
start of stack) The stack is used to hold parameters passed to subroutines and to save values
temporarily

Example: Using the Stack Pointer hold data
; Assemble code at 2100 Hex.
; Push Accumulator A
; Push Accumulator B
; Push Register X
; Push Register Y
; Pull Register X (= pop)
; Pull Pegister Y
; Pull Accumulator A
; Pul Accumulator B
; Return from subroutine (PC is on stacktop)
Press Control-C to exit the assembler

Calling the subroutine at $2100 saves A, B, X then Y. Normally the reverse order is used to
restore the values to their original registers, however, for this illustration we have swapped the
order of X with Y and B with A. The result of swapping registers can be seen using the
BUFFALO command rm (Register Modify) as follows:

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 5

Example: Single Hex Number Conversion to ASCII using C Language
// The algorithm to convert Hex2Ascii in the C language:
// We know ASCII characters
// 0..9 are $30..$39 - So the function is Add $30, and for
// A..F are $41..47 - Add ($41 - $0A) = $37
char hex2ascii (char hex_in) // returns an ASCII character
{ char result;
 result = (hex_in & 0x0F); // Mask input to be in the range $0..$F
 result += 0x30; // assume range 0..9, so add 0x30
 if (result > 0x39) // check above assumption
 { // result is 0x3A or more,

// incorrect assumption so fix it
 result += 7; // add 7 to get the final result

// in the range $41..$47
 }
 return (result); // return the result - is returned in Accumulator A
}

Hex2ASCII using AS11 (the M68HC11 assembler)
; This subroutine converts a single hex number (0 to F) to ASCII
; ON ENTRY: ACCA = hex digit to be converted
; ON RETURN: ACCA = ASCII character code of hex digit
HEX2ASCII

ANDA #$0F ; Ensure number is in range $0..$F
ADDA #$30 ; 30 Hex = ASCII character ‘0’
CMPA #$39 ; check if digit > '9’
BMI DONTADD
ADDA #$07 ; ACCA > ‘9’ so add another 7

DONTADD
RTS ; return to calling routine

; Accumulator A holds the returned result

Entering Hex2ASCII using BUFFALO Program
ASM 2000
ANDA #0F
ADDA #30
CMPA #39
BMI 200A - Buffalo’s inbuilt assembler cannot use symbols
ADDA #07
RTS

As you can see, BUFFALO assumes all numbers are hexadecimal.

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 6

Entering Hex2ASCII using Buffalo

Byte2ASCII in C
; This subroutine converts a Byte to 2 ASCII digits
; ON ENTRY: ACCA = byte to be converted
; ON RETURN: 2 ASCII character codes
int byte2ascii (char byte_in) // returns an ASCII character
{ int result; // integer = 2 bytes
 result = (hex2ascii (byte_in >> 4); // convert high hex digit to character
 result = (result << 8); // and store in upper 8 bits
 result += hex2ascii (byte_in); // convert low hex digit to character
 return (result); // result is returned in A & B register

 // AccA=Most Significant Character
 // AccB=Least Significant Character

}

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 7

Byte2ASCII - AS11 (68HC11 assembler)
; This subroutine converts a Byte to 2 ASCII digits
; ON ENTRY: ACCA = byte to be converted
; ON RETURN: ACCA:ACCB = 2 ASCII character codes
BYTE2ASCII

PSHA ; save Accumulator A on stack
ANDA #$0F ; mask low byte
JSR HexToAscii
TAB ; Transfer Character in AccA to AccB
PULA ; restore Accumulator A from stack
LSRA ; shift Accumulator A right four times
LSRA ; to transfer high nybble to low nybble
LSRA
LSRA
JSR HexToAscii ; most significant character in AccA
RTS ; return to calling routine

; Accumulator A holds the returned result

The reverse problem:

Conversion of ASCII to Hex
; This subroutine converts a single ASCII character to a hex digit
; ON ENTRY: ACCA = ASCII code of hex digit to be converted
; ON EXIT: ACCA = a single-digit hex number
ASCII2HEX

SUBA #$30 ; assume $30-$39,
CMPA #$9 ; check if result > 9,
BMI DONTSUB ; yes subtract another 7 if it is
SUBA #$07

DONTSUB
RTS ; return to calling routine

; Accumulator A holds the returned result

USING AS11 Assembler Data Types

Expressions used by assembler to allocate initialised space (similar to constants in C)
FCB - Form Constant Byte
Creates initialised space for byte sized objects
FCC - Form Constant Character String
FCW - Define Word

Examples
Shift Left & Right
Binary Multiplication
Binary Division
Extending for larger numbers

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 8

ELE22MIC Microprocessors
Aug 2004 Lecture 3 Page 9

Shift & Rotate - Left & Right

Next Lecture
Addressing Modes
Conditional Jumps

Acknowledgments
Notes revised by Paul Main, 2004, drawing from material originally written by John Catsoulis
and Sen Goh
Most images are courtesy of Motorola technical data sheets 11A8TD.PDF and 11RM.PDF
Refer to resources world wide web:http://thor.ee.latrobe.edu.au/~pmain/

